
Like this? Learn more about WebRTC development:

http://bit.ly/webrtc-architecture

WebRTC Server Side Cheat Sheet
If you want to build a WebRTC product that works, you will need to first

understand what server side components are necessary. Only then will you be

able to pick out your technology stack and architecture to fit your needs.

WebRTC is a rather new technology that needs more than just a “regular” web server
and your good ol’ browser.

There are 3 additional server types you will need to deal with and deploy to get that

product of yours running well. In this brief cheat sheet, I want to share with you what

these servers are, their machine specification and what other developers are doing to

successfully build their WebRTC products.

- Tsahi Levent-Levi

There are 4 servers needed to run most WebRTC services:

#1 - Web Server

The server “behind” the URL users place in their browser. Built
from every-day web development technologies

 Have one already? Great. See if you can merge it
with the signaling server

 Need to decide? Start by picking a singling server
and then decide on your web server technology

CPU

Memory

Storage

Network

Like this? Learn more about WebRTC development:

http://bit.ly/webrtc-architecture

#2 – Signaling Server

The server handling calls, sessions and rooms. Used to send

SDP offer/answer messages between WebRTC devices

 Go for an asynchronous language/framework,
preferably based on Node.js

 Check github for existing solutions

 Explore the use of SaaS: Firebase, PubNub,
Pusher, …

#3 – STUN/TURN Server

Takes care of making sure media gets connected, even if there

are firewalls and NATs along the route

 Don’t use public, freely available STUN servers in
production

 Deploy COTURN or restund on your own

 Or use a managed service from XirSys, Twilio, Bit6,
…

#4 – Media Server

Optional, used when you need to process media in one way or

another on the server side

 Most products end up needing media servers

 Their specification and technology stack depends
on your exact needs…

 See below for a few examples

CPU

Memory

Storage

Network

CPU

Memory

Storage

Network

CPU

Memory

Storage

Network

Like this? Learn more about WebRTC development:

http://bit.ly/webrtc-architecture

 SFU – Routing Media

Group video calling where the server routes media between the participants

 The popular choice for multiparty in WebRTC

 Look at Jitsi, Kurento, mediasoup, SwitchRTC and
Intel CS for WebRTC

 MCU – Mixing Media

Group video calling where the server mixes and combines media inputs into a single

stream sent to the participants

 Usually adopted when connecting to external
system such as telephony and video streaming

 Look at Kurento, Intel CS for WebRTC and Dialogic
PowerMedia XMS

 Recording Server

Optional, used when you need to process media in one way or another on the server

side

 It depends on how you want to record – the streams
received, or post processed for single file playback

 Look at your SFU and MCU solutions to see how
recording fits into their architecture

 Don’t forget CPaaS

Communications Platform as a Service – fully managed (and hopefully with the

features on you need)

 Less development effort

 Less ongoing maintenance

 Lower risk

CPU

Memory

Storage

Network

CPU

Memory

Storage

Network

CPU

Memory

Storage

Network

?

